Một số phương pháp khai phá dữ liệu quan hệ trong tài chính và chứng khoán (mô hình arima)

<p> MỞ ĐẦU Bài toán dự báo tài chính ngày càng được nhiều người quan tâm trong bối cảnh phát triển kinh tế xã hội. Đầu tư vào thị trường chứng khoán đòi hỏi nhiều kinh nghiệm và hiểu biết của các nhà đầu tư. Các kĩ thuật khai phá dữ liệu được áp dụng nhằm dự báo sự lên xuống của thị trường là một gợi ý giúp các nhà đầu tư có thể ra quyết định giao dịch. Mô hình ARIMA được xây dựng với chức năng nhận dạng mô hình, ước lượng các tham số và đưa ra kết quả dự báo dựa trên các tham số ước lượng đã được lựa chọn một cách tối ưu. Khóa luận nghiên cứu, thi hành mô hình ARIMA (từ các nghiên cứu của Box- Jenkins) và ứng dụng vào bài toán khai phá dữ liệu chuỗi thời gian trong dự báo tài chính, chứng khoán. Khóa luận đã thực nghiệm trên dữ liệu vnIndex và đã thu được kết quả bước đầu. Với nội dung trình bày những lý thuyết cơ bản về mô hình ARIMA cho dữ liệu thời gian thực (time series) và cách áp dụng vào bài toán thực tế - dự báo sự lên xuống của thị trường chứng khoán. Khóa luận được tổ chức theo cấu trúc như sau : Chương 1. GIỚI THIỆU CHUNG giới thiệu sơ lược về khai phá dữ liệu nói chung và bài toán dự báo đang được quan tâm trong khai phá dữ liệu . Bài toán dự báo được áp dụng dưới khia cạnh sử dụng mô hình ARIMA cho chuỗi thời gian thực. Chương 2. MÔ HÌNH ARIMA VÀ PHẦN MỀM EVIEW trình bày một số nội sung cơ sở lý thuyết về mô hình ARIMA, cũng như những công cụ sẽ được áp dụng vào trong mô hình mà khóa luận đề cập : Hàm tự tương quan ACF, hàm tự tương quan riêng phần PACF Các bước phát triển mô hình : xác định mô hình, ước lượng các tham sổ, kiểm định độ chính xác và dự báo. Mô hình ARIMA là một quá tình thử và sai : khi một kiểm định nào đó không thỏa mãn, phải xác định lại mô hình. Tiếp đến giới thiệu qua về phần mềm Eviews 5.1 cho quá trình thi hành. Chương 3. ÁP DỤNG MÔ HÌNH ARIMA VÀO BÀI TOÁN TÀI CHÍNH, CHỨNG KHOÁN trình bày thực nghiệm mô hình ARIMA cho dữ liệu tài chính, chứng khoán. Các bước trong quá trình thi hành chương trình với phần mềm Eviews 5.1, đưa ra kết quả và đánh giá với thực tế. Phần Kết luận tổng kết két quả của khóa luận và phương hướng nghiên cứu tiếp theo. MỤC LỤC MỞ ĐẦU 4 Chương 1. GIỚI THIỆU CHUNG  . 7  1.1. Bài toán dự báo 1.2. Dữ liệu chuỗi thời gian 7 9 1.2.1. Khái niệm chuối thời gian thực  . 10  1.2.2. Thành phần xu hướng dài hạn  . 10  1.2.3. Thành phần mùa   11  1.2.4. Thành phần chu kỳ   11  1.2.5. Thành phần bất thường   12  CHƯƠNG 2. MÔ HÌNH ARIMA VÀ PHẦN MỀM EVIEWS  . 13  2.1. Mô hình ARIMA  13 2.1.1. Hàm tự tương quan ACF   13  2.1.2. Hàm tự tương quan từng phần PACF   14  2.1.3. Mô hình AR(p)   17  2.1.4. Mô hình MA(q)  . 17  2.1.5. Sai phân I(d)  . 18  2.1.6. Mô hình ARIMA   18  2.1.7.Các bước phát triển mô hình ARIMA  . 22  2.2. Phần mềm ứng dụng Eviews 22 2.2.1. Giới thiệu Eviews 22 2.2.2. Áp dụng Eviews thi hành các bước mô hình ARIMA . 27 Tóm tắt chương 2  29 Chương 3. ÁP DỤNG MÔ HÌNH ARIMA VÀO BÀI TOÁN TÀI CHÍNH, CHỨNG KHOÁN  30  3.1. Mô hình ARIMA cho dự báo tài chính, chứng khoán  30 3.1.1. Dữ liệu tài chính   30  3.1.2. Mô hình ARIMA cho bài toán dự báo tài chính  . 30  3.1.3. Thiết kế mô hình ARIMA cho dữ liệu  . 31  3.2. Áp dụng 33 3.2.1. Môi trường thực nghiêm 33 3.2.2.Dữ liệu . 33 3.2.3.Kiểm tra tính dừng của chuỗi chứng khoán AAM . 34 3.2.4.Nhận dạng mô hình . 35 3.2.5.Ước lượng và kiểm định với mô hình ARIMA . 37 3.2.6Thực hiện dự báo   38  KẾT LUẬN   41 </p>

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC

TIN KHUYẾN MÃI

  • Thư viện tài liệu Phong Phú

    Hỗ trợ download nhiều Website

  • Nạp thẻ & Download nhanh

    Hỗ trợ nạp thẻ qua Momo & Zalo Pay

  • Nhận nhiều khuyến mãi

    Khi đăng ký & nạp thẻ ngay Hôm Nay

NẠP THẺ NGAY