Luận văn Môđun fp - Xạ ảnh và môđun fp - nội xạ

<p> Theo cách chứng minh ở trên thì HomR(S, K) ∈ FIS. Vì NR là FP- xạ ảnh, SR và RS là hữu hạn sinh tự do nên HomR(S, N) ∈ FPR, theo Bổ đề 2.1.10 (iii) thì HomR(S, N) ∈ FPS suy ra θ*: HomR(S, N) → HomR(S, M) là tiền phủ FP- xạ ảnh đặc biệt của HomR(S,M). (iii) ⇒ (ii) Giả sử θ*: HomR(S, N) → HomR(S, M) là tiền phủ FP- xạ ảnh đặc biệt của HomR(S,M). Khi đó, tồn tại dãy khớp các S- môđun phải sau: 0 Q Hom S, N Hom S,M 0 → → S R R ( ) → θ∗ ( ) → với QS ∈ FIS và HomR(S, N) ∈ FPS. Vì NS đẳng cấu với hạng tử trực tiếp của HomR(S, N) ∈ FPS nên NS ∈ FPS, do đó ta được điều phải chứng minh </p>

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC

TIN KHUYẾN MÃI

  • Thư viện tài liệu Phong Phú

    Hỗ trợ download nhiều Website

  • Nạp thẻ & Download nhanh

    Hỗ trợ nạp thẻ qua Momo & Zalo Pay

  • Nhận nhiều khuyến mãi

    Khi đăng ký & nạp thẻ ngay Hôm Nay

NẠP THẺ NGAY