Luận án Một số nghiên cứu về hệ phương trình g - Navier - stokes hai chiều

<p> Luận án đã đạt được các kết quả sau: 1. Chứng minh được sự tồn tại duy nhất nghiệm yếu, sự tồn tại và đánh giá số chiều fractal của tập hút lùi, sự tồn tại và tính ổn định của nghiệm dừng yếu của hệ g-Navier-Stokes hai chiều trong miền không nhất thiết bị chặn mà chỉ cần thỏa mãn bất đẳng thức Poincaré. 2. Chứng minh được sự tồn tại duy nhất nghiệm mạnh, sự tồn tại tập hút toàn cục và tính ổn định của nghiệm dừng mạnh của hệ g-Navier-Stokes hai chiều trong miền bị chặn. Chứng minh được các kết quả về xấp xỉ nghiệm trong khoảng thời gian hữu hạn và xấp xỉ dáng điệu tiệm cận của nghiệm. 3. Chứng minh được sự tồn tại duy nhất nghiệm yếu, sự tồn tại và tính ổn định của nghiệm dừng của hệ g-Navier-Stokes hai chiều trong trường hợp ngoại lực phụ thuộc trễ vô hạn, trong miền không nhất thiết bị chặn mà chỉ cần thỏa mãn bất đẳng thức Poincaré. </p>

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC

TIN KHUYẾN MÃI

  • Thư viện tài liệu Phong Phú

    Hỗ trợ download nhiều Website

  • Nạp thẻ & Download nhanh

    Hỗ trợ nạp thẻ qua Momo & Zalo Pay

  • Nhận nhiều khuyến mãi

    Khi đăng ký & nạp thẻ ngay Hôm Nay

NẠP THẺ NGAY