Khóa luận Ứng dụng mô hình SEM đánh giá lòng trung thành của khách hàng đối với dịch vụ Ngân hàng bán lẻ tại Ngân hàng thương mại cổ phần Ngoại thương Việt Nam – Chi nhánh Huế

<p> RMR: đánh giá phương sai phần dư của biến quan sát, mặt khác đánh giá tương quan phần dư của một biến quan sát này với tương quan phần dư của một biến quan sát khác. Giá trị RMR càng lớn nghĩa là phương sai phần dư càng cao, nó phản ánh một mô hình có độ phù hợp không tốt. RMSEA: là một chỉ tiêu quan trọng, nó xác định mức độ phù hợp của mô hình so với tổng thể. NFI: đo sự khác biệt phân bố chuẩn của χ2 giữa mô hình độc lập (đơn nhân tố, có các hệ số bằng 0) với phép đo phương sai và mô hình đa nhân tố. Mức xác suất: giá trị > 0,05 được xem là mô hình phù hợp tốt ((Arbuckle & Wothke (1999), Rupp & Segal (1989)). Điều này có nghĩa rằng không thể bác bỏ giả thuyết H0 (là giả thuyết mô hình tốt), tức là không tìm kiếm được mô hình nào tốt hơn mô hình hiện tại) Ngoài ra các quan hệ riêng lẻ cũng được đánh giá tốt dựa trên các mức ý nghĩa thống kê. Tác động của các biến ngoại sinh lên các biến nội sinh và tác động của các biến nội sinh lên các biến nội sinh được đánh giá qua các hệ số hồi quy. Mối quan hệ giữa các biến được biểu thị bằng mũi tên trên mô hình. Chiều mũi tên biểu diễn chiều tác động của biến này lên biến kia. Ứng với một mối quan hệ ta có một giả thuyết tương ứng (như đã trình bày ở phần đầu chương này về các giả thuyết và mô hình nghiên cứu). Trong các nghiên cứu thuộc lĩnh vực khoa học xã hội, tất cả các mối quan hệ nhân quả đề nghị có độ tin cậy ở mức 95% (p = 0,05) (Cohen (1988)). Bước 3: Chỉ số điều chỉnh mô hình (MI - Modification Indices) Chỉ số điều chỉnh mô hình là chỉ số ước lượng sự thay đổi của χ2 ứng với mỗi trường hợp thêm vào một mối quan hệ khả dĩ (ứng với một bậc tự do). Nếu ∆χ2 > 3.84 (ứng với một bậc tự do), cho phép ta đề nghị một mối quan hệ làm tăng độ phù hợp của mô hình (Hair và cộng sự (1998)). Điều này cũng tương tự như đưa từng biến độc lập vào trong mô hình hồi quy tuyến tính. Tuy vậy nhà nghiên cứu nên thận trọng bởi vì mối quan hệ thêm vào mô hình chỉ được xem xét khi nó ủng hộ lý thuyết và không nên cố gắng mọi cách để cải thiện các chỉ số nhằm làm cho mô hình phù hợp hơn (Bullock và cộng sự (1994), </p>

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC

TIN KHUYẾN MÃI

  • Thư viện tài liệu Phong Phú

    Hỗ trợ download nhiều Website

  • Nạp thẻ & Download nhanh

    Hỗ trợ nạp thẻ qua Momo & Zalo Pay

  • Nhận nhiều khuyến mãi

    Khi đăng ký & nạp thẻ ngay Hôm Nay

NẠP THẺ NGAY