Analysis of influencing parameters and basics of determining resistance factors of drilled shafts used in bridge substructures in ho-Chiminh city

On the basis of analysis results of statistical characteristics of resistance bias factor (λR) of the four methods and application of the statistical characteristics of load effect bias factor λD, λL), the other parameters as suggested in Table 3.7, to determine resistance factors of drilled shafts according to 2 methods: first-order reliability method (FORM) and Monte Carlo simulation method (MCS) as outlined in Chapter 2 as follows: - FORM method: Applying formula (2.7), using a spreadsheet on Excel function and using run loop Solver to determine the reliability index (β) corresponds to the values of the assumed resistance factors (ϕ = 0, 4, 0.6, 0.8, 1.05). Next, charting the relationship between β and ϕ; based on this relationship chart to determine the resistance factors corresponding to the target reliability index (βt = 1.64, 2.33, 3.0 and 3.5). Detailed results are presented in Table 4.1; - MCS method: Also apply the formula (2.7), set up the spreadsheets and use the Crystal Ball software (analysis software is integrated in the environment of Excel) to determine the statistical characteristics of state functions f(R,Q) corresponds to the values of assumed resistance factors (ϕ = 0.4, 0.6, 0.8, 1.05), which will determine the reliability index (β) , respectively. Next, charting the relationship between β and ϕ; based on this relationship chart to determine the coefficients of resistance corresponding to the target reliability index (βt = 1.64, 2.33, 3.0 and 3.5). Detailed results are presented in Table 4.1.

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC

TIN KHUYẾN MÃI

  • Thư viện tài liệu Phong Phú

    Hỗ trợ download nhiều Website

  • Nạp thẻ & Download nhanh

    Hỗ trợ nạp thẻ qua Momo & Zalo Pay

  • Nhận nhiều khuyến mãi

    Khi đăng ký & nạp thẻ ngay Hôm Nay

NẠP THẺ NGAY